Dysregulation of endothelial colony-forming cell function by a negative feedback loop of circulating miR-146a and -146b in cardiovascular disease patients

نویسندگان

  • Ting-Yu Chang
  • Wei-Chi Tsai
  • Tse-Shun Huang
  • Shu-Han Su
  • Chih-Young Chang
  • Hsiu-Yen Ma
  • Chun-Hsien Wu
  • Chih-Yung Yang
  • Chi-Hung Lin
  • Po-Hsun Huang
  • Cheng-Chung Cheng
  • Shu-Meng Cheng
  • Hsei-Wei Wang
چکیده

Functional impairment of endothelial colony-forming cells (ECFCs), a specific cell lineage of endothelial progenitor cells (EPCs) is highly associated with the severity of coronary artery disease (CAD), the most common type of cardiovascular disease (CVD). Emerging evidence show that circulating microRNAs (miRNAs) in CAD patients' body fluid hold a great potential as biomarkers. However, our knowledge of the role of circulating miRNA in regulating the function of ECFCs and the progression of CAD is still in its infancy. We showed that when ECFCs from healthy volunteers were incubated with conditioned medium or purified exosomes of cultured CAD ECFCs, the secretory factors from CAD ECFCs dysregulated migration and tube formation ability of healthy ECFCs. It is known that exosomes influence the physiology of recipient cells by introducing RNAs including miRNAs. By using small RNA sequencing (smRNA-seq), we deciphered the circulating miRNome in the plasma of healthy individual and CAD patients, and found that the plasma miRNA spectrum from CAD patients was significantly different from that of healthy control. Interestingly, smRNA-seq of both healthy and CAD ECFCs showed that twelve miRNAs that had a higher expression in the plasma of CAD patients also showed higher expression in CAD ECFCs when compared with healthy control. This result suggests that these miRNAs may be involved in the regulation of ECFC functions. For identification of potential mRNA targets of the differentially expressed miRNA in CAD patients, cDNA microarray analysis was performed to identify the angiogenesis-related genes that were down-regulated in CAD ECFCs and Pearson's correlation were used to identify miRNAs that were negatively correlated with the identified angiogenesis-related genes. RT-qPCR analysis of the five miRNAs that negatively correlated with the down-regulated angiogenesis-related genes in plasma and ECFC of CAD patients showed miR-146a-5p and miR-146b-5p up-regulation compared to healthy control. Knockdown of miR-146a-5p or miR-146b-5p in CAD ECFCs enhanced migration and tube formation activity in diseased ECFCs. Contrarily, overexpression of miR-146a-5p or miR-146b-5p in healthy ECFC repressed migration and tube formation in ECFCs. TargetScan analysis showed that miR-146a-5p and miR-146b-5p target many of the angiogenesis-related genes that were down-regulated in CAD ECFCs. Knockdown of miR-146a-5p or miR-146b-5p restores CAV1 and RHOJ levels in CAD ECFCs. Reporter assays confirmed the direct binding and repression of miR-146a-5p and miR-146b-5p to the 3'-UTR of mRNA of RHOJ, a positive regulator of angiogenic potential in endothelial cells. Consistently, RHOJ knockdown inhibited the migration and tube formation ability in ECFCs. Collectively, we discovered the dysregulation of miR-146a-5p/RHOJ and miR-146b-5p/RHOJ axis in the plasma and ECFCs of CAD patients that could be used as biomarkers or therapeutic targets for CAD and other angiogenesis-related diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells

Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...

متن کامل

MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle.

MicroRNA (miR)-146a and miR-146b are negative regulators of inflammatory gene expression in lung fibroblasts, epithelial cells, monocytes, and endothelial cells. The abundance of cyclooxygenase-2 (COX-2) and IL-1β is negatively regulated by the miR-146 family, suggesting miR-146a and/or miR-146b might modulate inflammatory mediator expression in airway smooth muscle thereby contributing to path...

متن کامل

MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways

Activation of inflammatory pathways in the endothelium contributes to vascular diseases, including sepsis and atherosclerosis. We demonstrate that miR-146a and miR-146b are induced in endothelial cells upon exposure to pro-inflammatory cytokines. Despite the rapid transcriptional induction of the miR-146a/b loci, which is in part mediated by EGR-3, miR-146a/b induction is delayed and sustained ...

متن کامل

miR-146a is upregulated during retinal pigment epithelium (RPE)/choroid aging in mice and represses IL-6 and VEGF-A expression in RPE cells.

PURPOSE MicroRNA-146a (miR-146a) has been proposed as a marker for age-associated inflammation, or "inflammaging", acting as a negative regulator of cellular senescence and pro-inflammatory signaling pathways. However, the regulation and function of miR-146 during ocular aging remains unclear. Here we propose that miR-146 is regulated during aging of the retina and choroid, and functions in ret...

متن کامل

miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an In vitro sepsis model

microRNAs (miRNAs) play an essential role in inflammation processes including sepsis. This study aimed to identify miRNAs as candidates for therapies that are involved in the innate immune response and to assess their potential functions in the activation of the endothelium. We stimulated THP-1 monocytes with 10 ng/ml LPS for 4 h and used the supernatant for the stimulation of human umbilical v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017